NISTIR 6774

Workshop On Fire Testing Measurement Needs: Proceedings

William Grosshandler (Editor)

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

NISTIR 6774

Workshop On Fire Testing Measurement Needs: Proceedings

William Grosshandler (Editor) Building and Fire Research Laboratory

August 2001

U.S. Department of Commerce

Donald Evans, Secretary

National Institute of Standards and Technology Dr. Karen H. Brown, Acting Director

F. MEASUREMENT UNCERTAINTIES INS STANDARD FIRE TESTS

Alex Wenzel, Depart. of Fire Technology Southwest Research Institute, San Antonio, TX 78228-0510

Martin Pabich, Underwriters Laboratories, Inc. 333 Pfingsten Road, Northbrook, IL 60062

John deRis, FM Global 1151 Boston-Providence Turnpike, Norwood, MA 02062

William Pitts, Building and Fire Research Laboratory National Institute of Standards and Technology, Gaithersburg, MD 20899

Measurement of Uncertainties

Alex B. Wenzel, Director
Department of Fire Technology
San Antonio, TX

Fire Test Laboratory Workshop Southwest Research Institute

Motivation

☐ ISO 17025 - December 31,2002

Test laboratories must have and apply procedures for estimating uncertainty of measurements.

☐ ISO 5725 Guide to the Expression of Uncertainty in Measurement (GUM)

SOUTHWEST RESEARCH INSTITUTE

What is Uncertainty?

- Doubt that exists about the result of any measurement at any level, i.e. national laboratories, test laboratories, calibration laboratories, and end users
- □ Tolerances are <u>not</u> uncertainties, but are acceptance limits
- O Specifications are <u>not</u> uncertainties. Specifications tell you what you can expect for a group or type of **Instruments.**

SOUTHWEST RESEARCH INSTITUTE

Approach to Meet Requirements

- ☐ Calculate measurement uncertainty in accordance with ISO 5725
- Support all measurements with uncertainty budgets
- Represent as expanded uncertainties using a coverage factor of 2 to approximate the 95% confidence level

SOUTHWEST RESEARCH INSTITUTE

Reporting a Measurement

- \square "M" = 0.00 \pm 0.00 (95% Confidence Level)
- \square "M" = 0.00 ± 0.00, 95% C.L.
- ☐ "M" = 0.00 measured with an uncertainty off 0.00 with a coverage factor of 2

SOUTHWEST RESEARCH INSTITUTE

Uncertainty Evaluation

- ☐ Type A Evaluation
 - Based on statistical analysis of a series of discrete observations using
 - Sample mean -

$$(\bar{x}) = \left(\frac{1}{N}\right) \sum x$$

- Sample variance
- $\sigma^2 = \left(\frac{1}{N-1}\right) \sum_{i=1}^{N-1} (x_i \overline{x})$
- Usually at a 95% Confidence Level

SOUTHWESTRESEARCH INSTITUTE

Uncertainty Evaluation

- □ Type B Evaluation
 - s When the information is scarce, it is based on scientific judgment using all relevant information available.
 - Previousmeasurement data
 - Experiencewith the behavior and propertyof relevantmaterials and instruments
 - Manufacturer's stated specifications
 - Engineering evaluation
 - Data provided in calibration and other reports
 - Uncertaintiesassigned to referencedata taken from handbooks

SOUTHWEST RESEARCH INSTITUTE

Combined Type A, B Evaluation

$$\boldsymbol{u}_{t} = \sqrt{\left\{ \left(\frac{\delta E}{\delta \boldsymbol{x}_{I}} \right) \times \boldsymbol{u}_{I} \right\}^{2} + \dots + \left\{ \left(\frac{\delta E}{\delta \boldsymbol{x}_{n}} \right) \times \boldsymbol{u}_{n} \right\}^{2}}$$

 u_t = total measurementuncertainty

 $\delta E l \delta x_i = \text{partial derivative of the defining test equation with respect to the } f^h \text{ individual measurement}$

SOUTHWEST RESEARCH INSTITUTE

Concerns

- Test labs very seldom have enough data to make a Type A estimate, resulting in uncertainty of Type B only.
- Manufacturers of instruments do not always provide complete uncertainty statements
- Calibration laboratories should be foilowing ISO 17025, but this is an ongoing process and many are not fully up to speed (calibration laboratories may require more than 2 years to comply ISO 17025)

SOUTHWESTRESEARCH INSTITUTE

Concerns

- Some test equipment is unique and has no means of outside calibration. Must rely on calibration of components and subsystems.
- Equipment may have embedded sensors or transducers that cannot be removed and reinstalled without destruction.
- There is a shortage of accredited callbration laboratories to meet the demand of the test laboratories.
 - 8 Results in higher cost
 - 8 Timedelays

SOUTHWEST RESEARCH INSTITUTE

Concerns

- For each increment of accuracy, cost increases proportionally.
- □ Tolerances are often used as uncertainties because manufacturers rarely provide uncertainty data.
- if routine recalibration shows an instrument to be out of specification, it casts doubt on ALL test results generated with the instrument since its last callbration
- interlaboratory proficiency testing (round robin) is an option, but it has associated cost to the laboratories.

SOUTHWEST RESEARCH INSTITUTE

Type B Evaluation for HRR Measurement – ASTM **E** 1354

- Evaluation for uncertainty in HRR requires measurement of
 - 8 Differential pressure, AP
 - s Exhaust duct temperature, τ_{\bullet}
 - 8 Mole fraction of oxygen, Xo2
- ☐ The instruments used to make these measurements rely on the following manufacturer specifications
 - 8 Pressure transducer 1%
 - 8 Thermocouple 0.75%
 - 8 Oxygen analyzer 0.5%

SOUTHWEST RESEARCH INSTITUTE

HRR Example

- Uncertainty calculation assumes a rectangular distribution found from $\sqrt[a]{\sqrt{3}}$ where a is the upper and lower range of the limit
- Expanded uncertainty uses root sum square method with coverage (k) factor of 2 for 95% confidence level

$$u_t = \left\{ \sqrt{\left(\frac{u_{\Delta P}}{\sqrt{3}}\right)^2 + \left(\frac{u_{T_c}}{\sqrt{3}}\right)^2 + \left(\frac{u_{X_{O2}}}{\sqrt{3}}\right)^2} \right\} \%$$

SOUTHWEST RESEARCH INSTITUTE

HRR Example

$$u_{t} = \left\{ \sqrt{\left(\frac{1.00}{\sqrt{3}}\right)^{2} + \left(\frac{0.75}{\sqrt{3}}\right)^{2} + \left(\frac{0.50}{\sqrt{3}}\right)^{2}} \right\} \% = 0.78\%$$

☐ Coverage (k) factor of 2

$$u_1 = 2 \times 0.78\% = 1.56\%$$

☐ Provides 95% confidence level

SOUTHWEST RESEARCH INSTITUTE

HRR Example

- \square HRR = $f(\Delta P, T, X_{02}, \Delta h_c/r_0)$ where
- $\triangle h_c/r_0 = 13.1 \times 10^3 \text{ kJ/kg oxygen}$
 - Ah, = net heat of combustion
 - \blacksquare $r_0 =$ stoichiometric oxygen/fuel mass ratio
 - \blacksquare $\Delta h_c/r_0 =$ oxygen consumption standard value
- R ASTM **E 1354** gives an associated error for $\Delta h_c/r_0$ of 5%
- Therefore, the error in ∆h_c/r₀ must be Incorporated into the root sum square equation

SOUTHWEST RESEARCH INSTITUTE

HRR Example

$$u_{t} = \left\{ \sqrt{\left(\frac{u_{\Delta P}}{\sqrt{3}}\right)^{2} + \left(\frac{u_{T_{c}}}{\sqrt{3}}\right)^{2} + \left(\frac{u_{X_{D_{c}}}}{\sqrt{3}}\right)^{2} + \left(\frac{u_{\Delta h_{c}}}{\sqrt{3}}\right)^{2}} \right\} \frac{1}{\sqrt{3}}} \right\}$$

$$u_{t} = \left\{ \sqrt{\left(\frac{1.00}{\sqrt{3}}\right)^{2} + \left(\frac{0.75}{\sqrt{3}}\right)^{2} + \left(\frac{0.50}{\sqrt{3}}\right)^{2} + \left(\frac{5.00}{\sqrt{3}}\right)^{2}} \right\} \%$$

 $u_t = 2.99\% \sim 3\%$

SOUTHWEST RESEARCH INSTITUTE

HRR Example

☐ Approximated "standard deviation"

$$u_1 = 3\%$$

☐ Coverage (k) factor of 2 = expanded uncertainty

$$u_1 = 2 \times 3\% = 6\%$$

☐ Provides for 95% confidence level

SOUTHWEST RESEARCH INSTITUTE

Summary

- Uncertainty budget necessary to identify major contributing factors
- Uncertainty budget shows the overriding uncertainty comes from the oxygen consumption standard value
- □ Why pursue greater tolerances in pressure transducers, thermocouples, etc., when largest contributing factor is inherent in the oxygen consumption standard value?

SOUTHWEST RESEARCH INSTITUTE